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Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the T1BL·1RS 
translocation for the rapid enrichment of 1RS with new allelic variation.  The main objective of this work was to 
develop a wheat genotype containing both the recessive crossability alleles (kr1kr1kr2kr2), allowing high crossability 
between 6x wheat and diploid rye, and the T1BL·1RS wheat–rye translocation chromosome.  This wheat genotype could 
be used as a recipient partner in wheat–rye crosses for the effcient introduction of new allelic variation into 1RS in trans-
location wheats.  After crossing the wheat cultivars Mv Magdaléna and Mv Béres, which have the T1BL·1RS transloca-
tion involving chromosome arm 1RS from Petkus rye, with the line Mv9 kr1, 117 F2 plants were analyzed for cross-
ability, 10 of which had higher than 50% seed set with rye and, thus, presumably carried the kr1kr1kr2kr2 alleles.  Four 
of the 10 plants contained the T1BL·1RS translocation in the disomic condition as detected by GISH.  The wheat–rye F1 
hybrids produced between these lines and the rye cultivar Kriszta were analyzed in meiosis using GISH.  T1BL·1RS/1R 
chromosome pairing was detected in 62.4% of the pollen mother cells . The use of FISH with the repetitive DNA probes 
pSc119.2, Afa family, and pTa71, allowed the 1R and T1BL·1RS chromosomes to be identified.  The presence of the 
1RS arm from Kriszta, besides that of Petkus, was demonstrated in the F1 hybrids using the rye SSR markers RMS13 
and SCM9.  In four of the 22 BC1 progenies analyzed, only Kriszta-specific bands were observed with these markers, 
although the presence of the T1BL·1RS translocation was detected using GISH.  We concluded that recombination oc-
curred between the Petkus and Kriszta 1RS chromosome arms in the translocated chromosome in these plants.

GISH reveals different levels of meiotic pairing with wheat for individual Ae. biuncialis chromosomes.  The 
T. aestivum–Ae. biuncialis (2n=4x=28; UbUbMbMb) disomic addition lines 2Mb, 3Mb, 7Mb, and 3Ub were crossed with 
the wheat cultivar Chinese Spring ph1b mutant genotype in order to induce homoeologous pairing, with the final goal 
of introgressing Ae. biuncialis chromatin into cultivated wheat.  Wheat–Aegilops homoeologous chromosome pairing 
was studied in metaphase I of meiosis in the F1 hybrid lines.  Using U and M genomic probes, GISH demonstrated the 
occurrence of wheat–Aegilops homoeologous pairing for chromosomes 2Mb, 3Mb, and 3Ub, but not for 7Mb.  The wheat-
Aegilops pairing frequency decreased in the following order:  2Mb > 3Mb > 3Ub > 7Mb, which may reflect differences in 
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the wheat-Aegilops homoeologous relationships between the examined Aegilops chromosomes.  The selection of wheat–
Aegilops homoeologous recombinations could be successful in later generations.

Molecular cytogenetic evaluation of chromosome instability in T. aestivum–S. cereale disomic addition lines.  The 
genetic stability of wheat–rye (Chinese Spring–Imperial) disomic addition lines was checked using the Feulgen method 
and FISH.  Feulgen staining detected varying proportions of disomic, monosomic, and telosomic plants among the prog-
enies of the disomic addition lines.  The greatest stability was observed for the 7R addition line, whereas the most un-
stable lines were those with 2R and 4R additions.  Chromosome rearrangements also were detected using FISH.  Based 
on the specific hybridization patterns of repetitive DNA probes pSc119.2 and (AAC)5, as well as ribosomal DNA probes 
(5S and 45S), isochromosomes were identified in the progenies of 1R and 4R addition lines.  These results draw atten-
tion to the importance of continuous cytological checks on basic genetic materials by using FISH, because this method 
reveals chromosome rearrangements that could not be detected either with the conventional Feulgen staining technique 
or with molecular markers.

Selection of U and M genome-specific wheat SSR markers using wheat–Ae. biuncialis and wheat–Ae. geniculata 
addition lines.  Wheat SSR markers specific to the U and M genomes of Aegilops species were selected.  A total of 108 
wheat SSR markers were successfully tested on Ae. biuncialis (2n = 4x = 28, UbUbMbMb), on five wheat–Ae. biuncialis 
addition lines (2Mb, 3Mb, 7Mb, 3Ub, and 5Ub) and on a wheat–Ae. geniculata (1Ug, 2Ug, 3Ug, 4Ug, 5Ug, 7Ug, 1Mg, 2Mg, 
4Mg, 5Mg, 6Mg, and 7Mg) addition series.  Among the markers, 86 (79.6%) were amplified in the Ae. biuncialis genome.  
Compared with wheat, polymorphic bands of various lengths were detected in Ae. biuncialis for 35 (32.4%) of the wheat 
microsatellite markers.  Three of these (8.6%) exhibited specific PCR products in wheat–Ae. biuncialis or wheat–Ae. 
geniculata addition lines.  The primers GWM44 and GDM61 gave specific PCR products in the 2Mb and 3Mb wheat–Ae. 
biuncialis addition lines, but not on the 2Mg addition line of Ae. geniculata.  A specific band was observed on the 7Ug 
wheat–Ae. geniculata addition line using the BARC184 primer. T hese three markers specific to the U and M genomes 
are helpful for the identification of 2Mb, 3Mb, and 7Ug chromosome introgressions into wheat.
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Application of Real-Time PCR in marker-assisted selection for stem rust resistance gene Sr24.

B.K. Das, A. Saini (Molecular Biology Division), S.G. Bhagwat, and N. Jawali (Molecular Biology Division).

Introduction.  Real-Time PCR (RT–PCR) is a technique mainly used to amplify and simultaneously quantify a targeted 
DNA molecule (Gibson et al. 1996).  Currently, four different chemistries, TaqMan® (Applied Biosystems, Foster City, 
CA, USA); Molecular Beacons (Newark, New Jersey, USA); Scorpions® (Sigma-Aldrich, St. Louis, MO, USA); and 
SYBR® Green (Life Technologies, Carlsbad, CA, USA), are available for RT-PCR.  All of these chemistries allow 




